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Velocity measurements inside a rotating cylindrical cavity 
with a radial outflow of fluid 

By J. M. OWEN AND J. R. PINCOMBE 
School of Engineering and Applied Sciences, 

University of Sussex, U.K. 

(Received 1 June 1979) 

Flow visualization and laser-doppler anemometry have been used to determine the 
flow structure and measure the velocity distribution inside a rotating cylindrical 
cavity with an outer to inner radius ratio of 10, and an axial spacing to inner radius 
ratio of 2.67. A flow structure comprising an inner layer, Ekman layers, an outer layer 
and an interior potential core has been confirmed for the cases where the inlet air 
enters the cavity either axially, through a central hole, or radially, through a central 
gauze tube, and leaves radially through a series of holes in the peripheral shroud. 
Velocity measurements in the laminar Ekman layers agree well with the ‘modified 
linear theory ’, and long- and short-wavelength disturbances (which have been reported 
by other experimenters) have been observed on the Ekman layers when the radial 
Reynolds number exceeds a critical value. The phenomenon of reverse flow in the 
Ekman layers and the possibility of ingress of external fluid through the holes in 
the shroud have also been observed. 

1. Introduction 
The rotating cylindrical cavity with a radial outflow of fluid shown in figure 1 (a) 

provides a simple model of co-rotating air-cooled gas turbine disks. In  the turbine, 
cooling air enters axially through a central hole, of radius r = a, in one disk and exits 
radially through a series of holes in the shroud at r = b. Owen & Bilimoria (1977) 
have made heat-transfer measurements for a range of rotational Reynolds numbers, 
Ree (Re, E Qb2/v ) ,  coolant flow rates, C, C, = Q/vb, Q being the volumetric flow 
rate), and gap ratios, G(G E s /b ) ,  for such cavities as well as for cavities with an axial 
through flow of coolant through a central hole in each disk. In  the latter case, measure- 
ments were strongly influenced by the occurrence of vortex breakdown in the central 
axial jet; this phenomenon was studied separately, under isothermal conditions, by 
Owen & Pincombe (1979). They related the occurrence of spiral and axisymmetric 
vortex breakdown with the axial Rossby number E,  ( E ,  = w/SZa, where w is the bulk- 
average velocity of the central jet, w = Qlna2). 

Considerable insight into the structure of laminar flow inside a rotating cavity with 
a uniform source at r = a and sink a t  r = b,  see figure 1 ( b ) ,  has been provided by Hide 
(1968).The flow can be divided into four regions: 

(i) an inner layer of thickness AE; 
(ii) separate Ekman layers with a thickness of approximately 3 0  ( D  = (v /Q)*) ,  

(iii) an outer layer of thickness Arc; and 
(iv) a potential core in which radial and axial components of velocity are zero. 

on each disk; 
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FIGURE 1. 
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Schematic diagram of a rotating cylindrical cavity 
(a )  Axial inlet; ( b )  radial inlet. 

with a radial outflow. 

In  the tests described below, flow visualization and laser-doppler anemometry are 
used to determine the flow structure and to measure the velocity distribution in a 
rotating cavity with an axial inlet; and these results are compared with those obtained 
for the radial inlet case. 

Hide's analysis is limited to laminar flow whereas gas turbines normally operate 
under turbulent conditions. However, the precise criteria for transition from laminar 
to turbulent flow inside rotating cavities are still not known. Ekman-layer instability 
has been investigated by Faller (1963) and Tatro & Mollo-Christensen (1967) for the 
case of a rotating cylindrical cavity with radial inflow. Two types of instability were 
observed: type I waves with a wavelength, A, of A/D 2: 12; type I1 waves with 
25 < A / L )  < 33. The occurrence of these waves depends on the radial Reynolds 
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number, Re, (Re,  = Q/2IIur) ,  and the radial Rossby number, E ,  ( E ,  = Q/4nr2QD; 
the radial Rossby number is the ratio of the average radial velocity in the Ekman 
layer to the tangential velocity of the cavity a t  the same radial location). As E,  -+ 0,  
Tatro & Mollo-Christensen found that type I1 waves occur a t  Re, N 56, and types I 
and I1 were both present at Re,  > 125. Above this value, the first manifestations of 
turbulence were observed as bursts of high-frequency fluctuations, but a low-frequency 
periodic structure was seen a t  Reynolds numbers well above transition. As Coriolis 
forces dominate in both the radial inflow and outflow cases, and as the flow structure 
is similar for both cases, it is probable that the instabilities noted above for inflow 
should also occur for the outflow case considered below. 

In  $ 2 ,  a summary of the salient points of Hide’s analysis is presented. In $ 3  the 
experimental apparatus is described, and in $54 and 5 the results obtained by flow 
visualization and laser-doppler anemometry, respectively, are discussed for the flows 
illustrated in figure 1. 

2. Source-sink flow in a rotating fluid 

continuity equations may be expressed as 
For steady, incompressible, laminar, axisymmetric flow, the Navier-Stokes and 

(2.1b) 

a a 
ar az 
- (TU) + - (rw) = 0, 

( 2 . l c )  

( 2 . 1 4  

where u, v,  w are the velocity components (relative to the rotating cylindrical cavity) 
in the r ,  0 and z directions, respectively, and 

p 1  = p - &pQ2r2, 

where p is the static pressure. In a rotating cavity the nonlinear convection terms in 
the curly brackets become increasingly less significant at large values of Q. In  fact, 
for large values of the rotational Reynolds number, Re,, and small values of the radial 
Rossby number, E,, equations (2.1) can be approximated by 

(2 .2a)  

(2.2b) 

(2.2c) 
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u = v = w = O  a t  z = O ,  

-= -= - -  au a' &-o as z - f c o ,  
az az ax 

and, for symmetry of the Ekman layers on each disk, 

The standard solutions for the Ekman layers are : 

u = -@exp ( - z / D )  sin ( z / D ) ,  (2 .3a )  

v = E( 1 - exp ( - z / D )  008 (z /D)) ,  (2.3b) 

w = 0, ( 2 . 3 ~ )  

where V is the tangential velocity of the inviscid core (between the Ekman layers on 
the rotating disks of the cylindrical cavity), and 

3 = - Q / 2 n r D .  (2 .4)  

Equation (2 .4 )  decreases in accuracy with increasing Rossby number, and Faller 
(1963)  has produced a power-series expansion of the nonlinear terms in (2 .1)  to give 
the result 

(1 + 0 . 3 ~ ~  + 0*388$ f . . .). - Q 
2, = -- 

2nrrrD 

Hide (1968)  has obtained approximate solutions of (2 .1 )  to account for the inner layer 
((i) in figure 1 b) ,  where the uniform radial source flow moves into the Ekman layers 
and the tangential velocity, v, is brought to zero a t  r = a, and the outer layer ((iii) 
in figure 1 b ) ,  where the Ekman layers feed into the uniform sink and the tangential 
velocity is brought to zero at r = b .  Hide's estimates of the thickness of the source and 
sink layers, AE and A K ,  respectively, can be expressed as 

and 

where 

and 

For large values of X,, ( 2 . 6 a )  can be simplified to 

where 
AE/a = e, 

E E ( r /a)2ef  = &/4na2QD. 

( 2 . 6 ~ )  

(2 .6b )  

( 2 . 6 ~ )  

(2 .6d )  

The above equations for AE and AK are only valid for AE < a and AK < b. 
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3. Experimental apparatus 
The apparatus was similar to that used by Owen & Pincombe (1979), andaschematic 

arrangement is shown in figure 2. 
The rotating cylindrical cavity comprised two Perspex disks of outer radius 

b = 190 mm, and a cylindrical shroud. Each disc was attached at its inner diameter to 
a stainless-steel tube of inner radius a = 19 mm. The axial spacing between the two 
disks was adjustable but for the testsreported belowa gap ratio of G = 0.267 was used. 
The whole disk assembly could be rotated a t  speeds up to 2600 rev./min by a variable- 
speed electric motor. As the air in the cavity was a t  virtually atmospheric conditions 
(v E 1.5 x 10-5 m2 s-I), it  was possible to achieve rotational Reynolds numbers up to 
Re, N 6.5 x 105. The speed of the electric motor, which was measured to an accuracy 
of one rev./min by an electronic timer-counter, drifted slowly, but this drift was kept 
within 1 % during the course of an experiment. 

For the radial inlet tests, see figure 1 ( b ) ,  a tubular gauze screen, which rotated with 
the cavity, was inserted inside the steel tubes a t  r = a. For the axial inlet case, 
see figure 1 (a),  no inner gauze tube was inserted, and for both axial and radial inlet 
tests a perforated shroud was used. This shroud was made from Perspex sheet, 1 mm 
thickness, with thirty holes of 12.7mm diameter at 12” angular intervals in the 
mid-axial plane. 

For the axial inlet tests, air was supplied from a calming section, and a 16: 1 area- 
ratio contraction, to the left-hand side of the cavity shown in figure 2. For the radial 
inlet tests, air could be supplied equally from the left- and right-hand sides. Variable 
flow rates, to produce a maximum value of C, = 4710 (& N 0.013 m3s-l), were 
obtained from a centrifugal fan, and the flow rate was determined by a calibrated 
Annubar differential-pressure sensing element. The pressure difference across the 
‘Annubar’ was measured by a micromanometer with a resolution of 0.1 mm w.g. 
and the flow rate was determined to an accuracy of better than 3 yo. 

For flow visualization,hhe air flow was ‘seeded ’ by means of a smokegenerator which 
vaporized large volumes of oil particles (approximately 0.8 pm diameter). For laser 
anemometry, a ‘micro-fog lubricator’ was used to atomize oil particles of approxi- 
mately 2pm diameter. The relationships of Burson, Keng & Orr (1967), for solid-body 
rotation, indicate that the radial migration error (or ratio of the particle radial velocity 
to the tangential air velocity) should be less than 0.2 % for the measurements reported 
below. 

For flow visualization, illumination of the cavity was achieved using a 5mW 
He-Ne laser and a cylindrical lens to produce slit-illumination in a plane through the 
axis of rotation (hereafter referred to as ‘the r, x plane’). For photography, a 2W 
argon-ion laser was used for illumination, and an Olympus OM2 camera (operating 
in the ‘ aperture preferred ’ mode) was arranged with the axis of its lens normal to the 
illuminated plane. With an f 1.8 lens and ASA 1600 film, a minimum exposure time 
of 1/60 s was necessary. 

The laser-doppler anemometer (LDA) comprised transmitting optics (which used 
a 6 mW H e N e  laser and rotating diffraction grating) and receiving optics arranged 
in a fonvard-scatter real-fringe mode. The signal from the photomultiplier in the 
receiving optics was processed by a Cambridge Consultants tracking filter. The latter 
produced an analogue voltage proportional to the doppler frequency (which itself was 
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FIGURE 2. Schematic arrangement of the experimantal apparatus. - - - - - -, 
approximate field of view for photographic study. 

proportional to the instantaneous component of velocity being measured), and the 
true time-average was obtained from a digital integrating voltmeter. Further details 
of the LDA and the accuracy of the velocity measurements can be found in Owen & 
Pincombe (1  979). 

4. Flow visualization 
By illuminating the r, z plane and pulsing the smoke generator, it  was possible to 

observe the flow structure inside the rotating cavity. For particular values of flow 
rate and rotational speed, a sequence of photographs was taken in ‘side scatter’ 
(with the axis of the camera lens normal to the plane of illumination) to record the 
developing smoke patterns that were formed from the time a pulse of smoke entered 
the cavity until it  had been convected to all regions of interest. The field of view for 
the photographic study is shown in figure 2, but it should be noted that reflexions 
from each disk gave rise to  mirror images at  z = 0 and z = s. It should also be noted 
that the camera shutter operation was not synchronized with the rotational speed 
of the cavity. 

In  order to appreciate the time scale of the photographic sequence, the average 
outward radial velocity component in the Ekman layers for 0 < z / D  < n takes a 
time 7 to move from r = a to r = b, where from ( 2 . 3 ~ )  

vb-27 = 4OC&l Re,$. (4.1) 

The time that the average inward radial velocity component, for n Q z / D  < 2n, 
takes to move from r = b to  r = a is approximately 247. 

In  $4.1, the overall flow structure is discussed, and details of theinner layer, Ekman 
layers and outer layer are given in $54.2-4.4 respectively. 

4.1. Overall $ow structure 

( a )  Radial inlet case. Figures 3 (a ,  b, c )  (plates 1 and 2) show the smoke patterns for 
C, = 79 (the lowest practicable flow rate) and Re, = 2.5 x lo4 (7 = 8 s) for the case 
where the flow enters the cavity radially through the fine-mesh cylindrical gauze a t  
r = a.  Smoke is injected into the upstream flow which enters the centre of the cavity 
from the left. 

Figure 3 ( a )  illustrates the flow structure a t  the time when the smoke has been 
convected through the inner layer and Ekman layers and has just reached the outer 
layer, which it leaves via the holes in the perforated shroud. The structure of figure 
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3 (a), where the potential core stands out as a black region into which no smoke has 
penetrated, can be seen to be close to  the schematic representation of figure i ( b ) .  
However, close examination of the Ekman layers in figure 3 (a)  (and in other photo- 
graphs taken in the same sequence) reveals the existence of a small-amplitude cellular 
motion with a wavelmgth an order of magnitude greater than the Ekman-layer 
thickness. 

At these low flow rates, there is evidence of an ingress of fluid from outside the cavity 
through the holes in the shroud, and smoke that has left the cavity a t  r = b subse- 
quently re-enters. This inflow creates an additional outer layer (an ‘ingress layer’) 
which is an order of magnitude larger than that caused by the outflow (the ‘egress 
layer ’). This compound outer layer is visible in figure 3 (a), and smoke can also be Seen 
to  have penetrated the inward-flowing region in the Ekman layers, n < z/D < 27r. 
This latter effect is clearly visible in figures 3 ( c )  where the inward-flowing smoke in 
the Ekman layers has nearly reached the inner layer. It should be noted that radial 
inflow in the Ekman layers occurs even when there is no such ingress. 

Figure 3 ( d )  shows the basic structure for C, = 314 and Re, = 2-5 x 104, where the 
flow to  the central gauze cylinder was supplied from both sides of the cavity and smoke 
was injected into the left-hand flow. Comparison of figures 3 ( c )  and 3 ( d )  reveals that 
increasing the flow rate has increased the size of the inner layer. Examination of 
figure 3 ( d )  reveals the presence of weak instabilities in the ‘developed’ Ekman 
layers adjacent to  the potential core and large-scale instabilities in the ‘developing’ 
Ekman layers inside the inner layer. These large-scale instabilities give rise to un- 
steady flow throughout the inner layer. The increase in flow rate has suppressed the 
ingress of external fluid into the outer layer; however, inflow in the Ekman layers is 
clearly visible, and smoke from the outer layer has nearly returned to the inner layer. 

Figure 3 ( e )  shows the structure for C !  = 628, Re, = 2 x lo5, where the low- 
amplitude long-wavelength cellular patterns in the Ekman layers are supplemented 
by short-wavelength disturbances. The latter appear to grow from the long-wave- 
length cells and move axially, in a ‘ finger-like-fashion’, into the potential core. Smoke 
soon diffuses into the core and the boundaries of the Ekman layers become indistinct, 
making further flow visualization difficult. These short- and long-wavelength dis- 
turbances are discussed in more detail in $4.3. 

(b )  Axial inlet case. Figures 3 ( f , g )  show the smoke patterns for C, = 79 and 
Re, = 2.5 x 10 (se = 1 )  for the case where the flow enters axiallyfrom theleft and there 
is no cylindrical gauze at r = a to create a radial source flow. Unlike the radial inlet 
case (where the central gauze prevents the observations, and perhaps the occurrence, 
of vortex breakdown) it was found that spiral vortex breakdown occurs for 0.3 < eZ ,< I ,  
and evidence of this can be seen by the asymmetric form of the central axial Aow. 
Comparison between figures 3 ( f )  and 3 ( a )  and between 3 (9) and 3 ( c )  reveals that the 
main effect of the axial inlet is to alter the structure and size of the inner layer; flow 
in the Ekman layers and outer layers (including the ingress of external flow) is similar 
for the axial andradialinlet cases. It should benoted that theaxialwhite bandatrla N 5 
in figures 3 (f) and 3 (9) was caused by reflexion from the shroud and not by smoke 
penetration. In  the radial inlet case, the central gauze prevented such reflexions. 

Figure 3(h)  shows the smoke patterns for the axial inlet case with C, = 314 and 
Re, = 2.5 x lo4 ( E ,  = 4). In  contrast to the lower flow-rate case, vortex breakdown is 
absent as is revealed by the axisymmetric form of the central axial flow. Also in 
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contrast to figure 3 (f) (where smoke fills the inner layer before filling the Ekman layer), 
figure 3 (h) reveals that, a t  this higher flow rate, smoke penetrates into both Ekman 
layers before it fills the inner layer. It was found that, for the axial inlet case, increasing 
the flow rate increases the flow into the right-hand side of the inner layer, thereby 
increasing the circulation (which is anticlockwise in the half of the cavity shown in 
the photographs). Regardless of the recirculation occurring near the centre of the 
inner layer, the outer part of this layer distributes the flow equally to the two Ekman 
layers. 

As for the radial-inlet case, Ekman-layer instability occurred for the axial-inlet 
case and this together with vortex breakdown for E, < 1 prevented the observation of 
steady flow in the inner layer under any condition. Short-wavelength disturbances on 
the Ekman layers were also observed for the axial-inlet case under similar conditions 
to those seen on the radial-inlet case. 

4.2 .  The inner layer 
The thickness of the inner layer, AE, was observed to  increase with increasing flow rate 
and decrease with increasing rotational speed. In  order to quantify the thickness, the 
argon-ion laser was used to illuminate the r, z plane, and the He-Ne laser was used to 
produce an axial beam of light, 0.6 mm diameter, that could be traversed in the radial 
direction until it coincided with the ‘edge’ of the smoke-filled inner layer. The error 
in the measured results was estimated to be approximately 3mm, and this was 
attributed to the difficulty in defining an edge to the irregular boundary that (owing 
to the slow diffusion of smoke) tended to change with time. 

Figure 4 shows the measured variation of AE/a with E for both the radial and axial 
inlet cases for a range of flow rates. For large values of X, (which was the case in the 
experiments), equation (2.7) suggests that the thickness/Rossby number relation- 
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ship should be linear, and for 1 < AE/a < 3 the experimental results are correlated by 

AE/a = 0.466. (4.2) 

As these values of AE/a  are outside of the range of Hide’s (1968) model, it is surprising 
that the experimental results agree even qualitatively with his predictions. 

I n  order to explain the behaviour of the inner layer at larger values of AE/a, it is 
instructive to rewrite equation (2.5) as 

V,/!& = 1 - 2 ~ , (  1 + 0.3g + 0.3886; + . . .), (4.3) 

where V, is the tangential component of velocity of the potential core relative to a 
stationary reference frame. From equation (4.3) it follows that V, will equal zero at 
6, = 0.42, and for larger e,, (smaller values of r )  it will become negative. From the 
velocity measurements discussed in 5, it would seem that the tangential velocity in 
the potential core never becomes negative, and the inner layer extends to a point 
where V, N 0, that is c,, N 0.42. If we assume that AE is the thickness of the inner 
layer to the point where V, = 0, it follows from (4.3) that 

(4.4) AE/a = 1.564 - 1. 

It can be seen from figure 4 that (4.4) provides a reasonable approximation for the radial 
inlet case but tends to underestimate the size of the inner layer for the axial inlet case. 
This is discussed further in 5 5.  

4.3. The Ekman layers 

Attempts were made to quantify the critical radial Reynolds number for Ekman-layer 
instability from visual observation of the smoke patterns in the Ekman layers. For 
a fixed flow rate and rotational speed, smoke was introduced into the cavity, and the 
radius at which the ‘ripples’ in the boundary of the Ekman layers could no longer be 
discerned with the naked eye was considered to be the critical radius from which Re, 
was determined. Measurements were limited to the radial inlet case, where (unlike the 
asymmetrical axial inlet case) the critical radius was the same in both Ekman layers. 

The instability criterion was arbitrary and measurements were subject to large errors 
(owing to the difficulty in determining when the amplitude of the ripple was negligible). 
It was found that the critical radial Reynolds number could be correlated by 

Re, = 78- 1 2 8 ~ ~ .  (4.5) 

The values of the critical Reynolds numbers estimated from the photographs were 
consistent with (4.5). However, owing to the limited data and large scatter, the 95 % 
confidence limits in the intercept and slope of equation (4.5) (which was based on 
eleven data points between 6, = 0.10 and 0.19) were 18 and 126, respectively. Tatro 
& Mollo-Christensen (1967) obtained a correlation for the onset of type I1 waves for 
radiaI inflow (where C, is negative) in which 

Re, = 56.3 - 116.86,. 

Re,, = 125 - 7.326,. 

(4.6) 

They also confirmed Faller’s (1963) correlation for type I waves where 

(4.7) 

As the wavelength of the disturbances seen in the present study was consistent with 
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type I1 waves ( h / D  N 30), and in view of the similar forms of (4.6) and (4.6), it  was 
concluded that the long-wavelength cellular disturbances were type I1 waves. Accord- 
ing to Tatro & Mollo-Christensen, type I waves do not occur alone, and so the flow 
visualization techniques used in the present series of tests were not suited to the iden- 
tification of type I waves. 

The short-wavelength disturbances menioned in 0 4.1 did not match the description 
of type I waves (which are confined to the Ekman layers and where h / D  21 12) but 
correspond more closely to Tatro & Mollo-Christensen’s observations of ‘ bursts 
of high frequency fluctuations ’ that occurred after ‘transition to turbulence ’. Owing 
to the rapid diffusion of smoke into the potential core, it  was difficult to quantify the 
precise conditions under which the short-wavelength fluctuations first occurred. 
From inspection of a number of photographs, these fluctuations were visible when 
the radial Reynolds number exceeds the value given in (4.5) by between 50% (at 
Re, = 5 x lo4) and 100 % (at Re, = 2 x lo6). If the presence of the short-wavelength 
disturbances represent the decay of a structured instability into turbulent flow, then 
it would seem that increasing the rotational speed delays the transition. 

4.4. The outer layer 
Referring to figure 1 (b ) ,  attempts were made to measure the thickness of the outer 
layer, A,, for 49 < C, < 191, 1.1 x lo4 < Re, < 2 . 0 ~  lo6, using the technique des- 
cribed in $4.2 for measuring AE. As AK < AE, the measurements were prone to large 
relative errors, and observations were made difficult when the ingress of smoke from 
outside the cavity occurred. During ingress, as discussed in $4.1,  the structure of the 
outer layer was complex and its boundary was difficult to define. The only positive 
statement that can be made about the thickness of the outer layer is that, in the 
absence of ingress, the order of AK was that calculated from (2.6). 

5. Velocity measurements 
Detailed measurements of the axial distribution of the radial and tangential 

components of velocity were made at r / a  = 6.00 and 8.33 for a range of flow rates and 
rotational speeds. The radial distribution of the tangential velocity in the potential 
core was measured near the mid-axial plane. For r / a  > 6, these measurements were 
made a t  z /s  = 0.5 with the optics arranged axially; for r / a  < 4, the measurements were 
made a% z / s  = 0.375 with the optics arranged radially. This departure from the mid- 
axial plane was necessary to avoid ‘flare’ from the holes in the shroud. Also, with the 
optics arranged radially, the presence of the cylindrical gauze tube prevented measure- 
ment for the radial inlet case. 

In  order to compare the measurements, which were made in a stationary reference 
frame, with the equationsof § 2, which were derivedfor a rotating frame, it is convenient 
to express (2.3) in terms of V,, the tangential component of velocity relative to a 
stationary frame (V, = v + Qzr), and U ,  the bulk-average radial velocity a t  r = a 
( U  = &/27rm), as 

- - - -- exp ( - z / D )  sin ( z /D);  ( 5 . 1 ~ )  u u  
- 

U V 

(5.lb) 
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FIG- 6. The axial distribution of radial and tangential components of velocity at r/a = 8.33, 
Re, = 6 x 104. 
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For the potential core, (2.4) and (2.5) can be written as 

and 

Equation (5.2) being the standardEkman form and (5.3) being the Faller modification. 
Figure 5 shows the axial variation of u / U  and &/Qr at r / a  = 8.33 and Re, = 6 x 104 

for three values of E,, and compares these with the values obtained from (5.1). It 

V/Qr = & / f i r -  1 = - 26, 

E/Qr = &/Qr-l = -2er(1+0.3e,,+0-38&~). 

(5.2) 

(5.3) 
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should be noted that (5.3) was used to calculate Z/Qr in (5.1b); the values of u/V 
calculated from (5 . la)  are so weakly dependent on e,, that in figure 5 (and figures 
6, 7 and 8) the three theoretical curves for the radial velocity merge into one. The ex- 
perimental measurements of radial velocity are in good agreement with (5.1 a) ,  and 
the reverse flow (which is predicted for n < z /D > 2n, and was discussed in $4) has 
been measured. The tangential velocity measurements are also in good agreement 
with (5.1 b), although there is a small discrepancy at  er = 0.310. This discrepancy may 
be due to the neglect of higher powers of e,, in (5.3) or because the Ekman layer in- 
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stabilities were present. It can also be seen that there is no significant difference 
between the tangential velocities measured for the axial inlet and the radial inlet 
cases. 

Figure 6 shows similarresultsforr/a = 6 andBe, = lo5. The results for the two lowest 
Rossby numbers are in good agreement with the theory; a t  the highest Rossby number 
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FIQ~RE 8. The axial distribution of radial and tangential components of velocity at r / a  = 6.00, 
~ e ,  = 2 . 5 ~  104. 

G 0.268 0-463 0.845 
Equation (6.1) - 
Axial inlet 0 0 
Radial inlet @ @ $)measured values 

there is a discrepancy but, at this condition, the inner layer has reached (and for the 
axial inlet case it has exceeded) r / a  = 6. For the highest Rossby number, (5 . lb)  
and (5.3) predict a negative value for V, (which is not shown in figure 6) in the potential 
core; in practice, this does not occur, and the actual values of V, exceed those predicted. 

Figure 7 shows the results at r /a  = 6 for Re, = 5 x lo4. The inner layer extends past 
this radius for er = 0.597 (and for er = 0.327 when the fluid enters the cavity axially), 
and this can be seen from the measured values of u / U ,  which show that most of the 
outflow occurs near the downstream (right-hand) disk with a region of inflow between 
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( b )  r /a  = 8, er = 0.25. 0, axial inlet caae; gf, radial inlet; -, equation (5.3). 

the disks. The tangential velocity departs from (5.1 b )  for the higher Rossby numbers, 
and for 8,. = 0.597 a negative value (which is not shown on the figure) is predicted for 
Ve. Not surprisingly, the inlet conditions affect the flow in the inner layer, as can be 
seen from the measured values of V, a t  cr = 0.597. 

Figure 8 shows a greater influence of the inner layer on measurements made at 
r /a  = 6 for Ree = 2.5 x lo4. The inner layer extends past this radius, regardlesb of 
inlet conditions, for 8,. > 0-463, and so (5.1) is only valid for $he lowest-Rossby-number 
case. For the axial inlet case, recirculation inside the b e r  layer increases with 
increasing Rossby number (which is equivalent to being ‘deeper’ inside the inner 
layer) and the tangential velocity distribution inside the layer depends on the inlet 
conditions. 

Figure 9 shows the behaviour of the tangential velocity inside the potential core. 
Figure 9 (a)  shows the variation of V,/Clr with r /a  for the case of C, = 689 and Re, = 
5 x lo4 (c = 24-5). For r /a  < 4, it was possible to obtain measurements for the axial 
inlet case only; for r /a  =- 6, the measurements for the radial inlet case are only shown 
if they depart from the measurements for the axial inlet. Figure 9(b) shows the 
variation of &/Clr with C, a t  r/a = 8 and c = 16 (cr = 0.25). 

FIGURE 9. Variation of tangential velocity in the mid-axial plane. (a) C, = 689, Re, = 5 104; 
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It can be seen from figure 9 (a) that the agreement between the measured and pre- 
dicted values is good at the larger values of r /a .  However, at r /a  = 6.5, where (5.3) 
produces a zero value of 5, the measured values have diverged from (5.3). This 
divergence is attributed to  the influence of the inner layer. 

For the axial inlet case, the inner layer extends to  r / a  = 7; for the radial inlet case, 
the layer is smaller. However, for both cases (4.4), which is based on the condition 
that 5 / Q r  = 0 a t  the edge of the inner layer, provides an approximate estimate of the 
size of the inner layer. Inside the inner layer, where only measurements for the axial 
inlet case were possible, it can be seen that V,/str increases with decreasing radius 
down to r = a and then falls sharply to zero in a shear layer. 

It can be seen from figure 9(b) that the measured values of &/Qr in the potential 
core are in good agreement with (5.3) for C, < 1000 (Re, < 200)) but for higher C, 
the measured values of V, exceed the theoretical values. Thus, in these radial outflow 
experiments, where the relative tangential velocity, V, is negative, the measured 
values of V exceed the theoretical values for Re, > 200. For radial inflow, where V is 
positive, Faller (1963) found that the measured values of V become less than the theore- 
tical values for Re, > 125, which was consistent with his observation of type I waves. 
Although type I waves were not identified in the present series of tests, the short- 
wavelength fluctuation described in 84.3 would have appeared well before Re, = 200. 
It is therefore postulated that these short-wavelength disturbances signify the onset 
of turbulence and that full transition to turbulent flow in the Ekman layers does not 
occur (under these test conditions) until Re, 2i 200. It should be pointed out, however, 
that  ingress of external fluid, via the holes in the shroud, occurred for C, > 430 
(Re,, > 86) in these tests. In  order to be more positive about transition from laminar 
to turbulent flow, it would be necessary to conduct additional experiments on a rig in 
which such ingress is prevented. 

6. Conclusions 
Flow visualization and laser-doppler anemometry have confirmed that the structure 

of the flow inside a rotating cylindrical cavity with a radial outflow of fluid is similar 
to that determined by Hide (1968). In the two cases examined, where the fluid entered 
either axially or radially near the centre of the cavity and left radially through holes 
in a peripheral shroud, the structure comprised an inner layer, Ekman layers, an 
outer layer and an interior potential core. The main difference between the radial and 
axial inlet cases was in the size and nature of the inner layer. 

For the radial inlet case, steady flow was observed in the inner layer at  small values 
of the radial Reynolds number, Re,, but, as Re, was increased, the flow was readily 
destabilized by large-scale instabilities generated in the ‘ developing ’ Ekman layers. 
For the axial inlet case, recirculating flow occurred in the inner layer (which tended to 
be larger than that of the radial inlet case), and the occurrence of Ekman layer 
instability and/or vortex breakdown in the central jet caused unsteady flow, no 
matter how small the value of Re,, under all observed conditions. 

Measurements of the radial and tangential components of velocity in the Ekman 
layers were in good agreement with Faller’s (1963) ‘modified linear theory’, and 
reverse (radially inward) flow, which is predicted to occur in the Ekman layer ad- 
jacent to the potential core, was observed and measured. Long-wavelength ( h / D  N 30) 



Velocity measurements inside a rotating cylinder 127 

cellular disturbances occurred on the Ekman layers when the radial Reynolds number 
exceeded a critical value that depended on the radial Rossby number, er. The results 
were correlated by 

Be,, = 78-  128g. 

Short-wavelength ‘ finger-like ’ disturbances propagated axially from the long-wave- 
length cells into the potential core when the critical value of Re, was exceeded by 
between 60 yo (at low rotational speeds) and 100 yo (at high rotational speeds). 

Although the thickness of the outer (egress) layer was difficult to quantify, it was 
an order of magnitude smaller than that of the inner layer and was of order the thick- 
ness predicted by Hide. If the flow rate was less than a minimum value, ingress of 
external fluid occurred through the holes in the peripheral shroud. When ingress 
occurred the outer layer comprised a thin ‘egress layer’ for the outflow and a much 
thicker ‘ingress layer’ for the inflow of external fluid. 

In the potential core, measurement of the tangential component of velocity for 
Re, < 200 was in good agreement with the modified linear theory. Above this value 
of radial Reynolds number, the measured velocities exceed the theoretical values. 
This effect, which occurred well after the appearance of the short-wavelength distur- 
bances, is believed to be associated with tramition from laminar to turbulent flow in 
the Ekman layers. 

The authors wish to thank the Science Research Council for sponsoring the work 
described in this paper and to thank Dr R. H. Rogers for her advice and assistance. 
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FIGURE 3. Flow visualization inside the rotating cavity. 

Ree = 2 x  IW. 
Radial inlet: (a, 0,  c )  C, = 79, Re, = 2.5 x 104; (d)  C, = 318, Re, = 2.5 x 104; (e) C ,  = 628, 

Axial inlet: (f, y) C ,  = 79, Re, = 2.5 x IOU;  ( h )  C ,  = 314, Re, = 2.5 x 104. 




